66 research outputs found

    Forest landscape ecology and global change: an introduction

    Get PDF
    Forest landscape ecology examines broad-scale patterns and processes and their interactions in forested systems and informs the management of these ecosystems. Beyond being among the richest and the most complex terrestrial systems, forest landscapes serve society by providing an array of products and services and, if managed properly, can do so sustainably. In this chapter, we provide an overview of the field of forest landscape ecology, including major historical and present topics of research, approaches, scales, and applications, particularly those concerning edges, fragmentation, connectivity, disturbance, and biodiversity. In addition, we discuss causes of change in forest landscapes, particularly land-use and management changes, and the expected structural and functional consequences that may result from these drivers. This chapter is intended to set the context and provide an overview for the remainder of the book and poses a broad set of questions related to forest landscape ecology and global change that need answers

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach

    Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China

    Get PDF
    Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration

    Using spatial simulations of habitat modification for adaptive management of protected areas: Mediterranean grassland modification by woody plant encroachment.

    No full text
    Spatial simulation may be used to model the potential effects of current biodiversity approaches on future habitat modification under differing climate change scenarios. To illustrate the approach, spatial simulation models, including landscape-level forest dynamics, were developed for a semi-natural grassland of conservation concern in a southern Italian protected area, which was exposed to woody vegetation encroachment. A forest landscape dynamics simulator (LANDIS-II) under conditions of climate change, current fire and alternative management regimes was used to develop scenario maps. Landscape pattern metrics provided data on fragmentation and habitat quality degradation, and quantified the spatial spread of different tree species within grassland habitats. The models indicated that approximately one-third of the grassland area would be impacted by loss, fragmentation and degradation in the next 150 years. Differing forest management regimes appear to influence the type of encroaching species and the density of encroaching vegetation. Habitat modifications are likely to affect species distribution and interactions, as well as local ecosystem functioning, leading to changes in estimated conservation value. A site-scale conservation strategy based on feasible integrated fire and forest management options is proposed, considering the debate on the effectiveness of protected areas for the conservation of ecosystem services in a changing climate. This needs to be tested through further modelling and scenario analysis, which would benefit from the enhancement of current modelling capabilities of LANDIS-II and from combination with remote sensing technologies, to provide early signals of environmental shifts both within and outside protected areas

    Integration of Spatio-Temporal Landscape Analysis in Model Approaches

    No full text
    corecore